Единица измерения по шкале рихтера. Что такое землетрясение

Более 2000 пет назад в Китае был создан прибор, предупреждающий людей от наступающего землетрясения. Этот прибор имел форму лягушки, с овальным основанием и четырьмя, наклонными плоскостями, в которых были размещены металлические шарики. При наступлении землетрясения, колебания, вызванные сейсмическими волнами раскачивали прибор и шарики выпадали из своих гнезд на металлическую подставку. Это было предупреждение о приближающемся землетрясении. Таким образом,с первых дней появления науки сейсмологии, её задачей было предупреждение людей о приближающемся землетрясении, тем самым,обеспечение безопасности жизни людей от природных катастроф. Потребовалось 2000 лет, чтобы появилось печально известное решение международной конференции в Лондоне в 1996г., в котором говорится, что прогноз землетрясений не возможен. Это означает, что усилия тысячи ученых, посвятивших свою жизнь решению этой проблемы человечества и миллиарды долларов, истраченные на исследования, были напрасны? О том, что это решение принято «скептиками», как называют ученых, потерявших надежду найти положительный результат в исследовании конкретной проблемы, от отчаяния, было понятно, уже тогда, т.к. с июня 1995г. пресса более 20 стран мира сообщала о том, что Сахалинское землетрясение было спрогнозировано автором и МЧС России получило предупреждение из МЧС Армении,за три месяца до трагедии, когда исчез с лица Земли город Нефтегорск. В начале ХХ века, впервые были получены изменения отношения продольных (VP) и поперечных (VS) сейсмических волн в зоне развития очага сильных землетрясений. И это отношение стало первым предвестником землетрясений. Ученые во многих развитых странах мира начали проводить исследования, с целью создания технологии прогнозирования землетрясений, способной определять место (координаты широты и долготы очага), время (год, месяц, день) и силу (магнитуду) будущих землетрясений. В настоящее время известны более 300 предвестников землетрясений, которые так и не привели к решению этой проблемы и вопрос прогнозирования землетрясений оставался без ответа. В чем причина неудачи? По катастрофическим последствиям, которые приводят к огромному количеству жертв и разрушений, землетрясения являются наиболее опасными природными катастрофами. Количество жертв от землетрясений, в ХХ веке составило 1,4 миллиона (Осипов,2001), из которых около 1,0 –го миллиона жертв приходится на последние 30 лет. За первые 12 лет, XXI века, число погибших от землетрясений приближается к 1,0-му миллиону (около 800 000): Индонезия (о.Суматра, 2004)- около 300 000 ; Гаити –около 300 000; Япония (Фукусима)…Ежегодно происходят: 1 землетрясение – с магнитудой до 9; около 15 землетрясений - до 8; 140 - до 7; 900 - до 6; 8000 - до 5. В настоящее время эти цифры имеют тенденцию идти по нарастающей. Вопросом прогнозирования землетрясений занимались и занимаются ученые всех стран мира и на эти исследования были потрачены миллиарды долларов, однако землетрясения продолжают уничтожать города, людей, страны. В чем причина беспомощности ученых всех стран мира? Политиков и МЧС эти вопросы не интересуют, а Правительства обращаются к ним, когда происходит катастрофа и гибнут люди, города и страны. На Лондонской конференции в 1996г. многие специалисты пришли к выводу, что сейсмическое прогнозирование безнадежно. По результатам конференции было опубликовано:«Сейсмическое прогнозирование безнадежно? Полный пессимизм относительно возможности надежного прогноза землетрясений высказали некоторые геофизики на состоявшейся в ноябре 1996 г. в Лондоне международной конференции. Р.Геллер (R.Geller; Токийский университет) отметил, что, несмотря на затраченные международным сообществом ученых усилия и средства, не удалось за все последние десятилетия обнаружить ни одного достойного доверия признака надвигающегося сейсмического события (некоторым сигналам, находящимся на уровне шумов или даже ниже, придавалось излишнее значение). К такому мнению присоединился сейсмолог С.Кремпин (S.Crampin; Эдинбургский университет, Шотландия). Скептицизм специалистов усилился после того, как несколько греческих сейсмологов заявили, что им якобы удалось прогнозировать землетрясения по предшествующим вариациям магнитного поля Земли; в решительной критике их отчета указывалось на совершенно неопределенные сведения о месте и времени предстоящих толчков, об их интенсивности. Многие ученые теперь полагают, что землетрясения вообще относятся к числу критических явлений, которые возникают в системе, выведенной на грань неустойчивого равновесия. Предсказать конкретно, когда произойдет критическое явление, почти невозможно; по мнению сейсмолога И.Мейна (I.Main; Эдинбургский университет), построить прогноз землетрясения столь же сложно, как заранее установить, какая именно снежинка вызовет снежную лавину в горах. Однако, отнеся подземные толчки к разряду критических явлений, специалисты теперь могут внести новые поправки в строительные кодексы с учетом научных критериев сейсмостойкости сооружений (существующие правила в основном опираются на голую эмпирику). New Scientist. 1996. V.152. N 2056. P.10 (Великобритания)». Итак, в 1996г. международная конференция в Лондоне, опираясь на мнение Р.Геллера (Токийский Университет) и двух сотрудников Эдинбургского Университета, вынесла приговор более чем столетней работе ученых мира о невозможности заранее определить место, время и магнитуду будущего землетрясения. Видимо авторам этого проекта не было известно о том, что в 1995г., т.е. за один год до принятия Лондонского решения, автором этих строк, была разработана физическая модель, позволяющая теоретически рассчитывать параметры будущих землетрясений на планете: место(координаты широты и долготы), время (год, месяц и день) и силу (магнитуду) на неограниченное время вперед - методика краткосрочного прогнозирования землетрясений и других природных катастроф (Публикации: 1.Прогнозирование землетрясений. Монография. Повышение сейсмостойкости зданий и сооружений. Изд. «Айастан», Ереван, 1989,глава, 8.5, стр. 316. 2.Электромагнитная модель механизма возникновения очага землетрясений. «Вестник» Международной Академии наук экологии и безопасности жизнедеятельности,Санкт-Петербург,№ 7(19),2000, 3. Закономерность связи сейсмических волн, испускаемых очагом землетрясений. «Вестник» Международной Академии наук экологии и безопасности жизнедеятельности,Санкт-Петербург,№ 7(31),2000 4. Краткосрочный прогноз землетрясений и других природных катастроф. Монография.Санкт-Петербург,2000, стр. 135. 5. Earthquakes and natural disasters shorth-term prediction.Sankt-Peterburg. 2000, p. 128.) и по ней были рассчитаны и переданы в МЧС России (за три месяца до трагедии) параметры Сахалинского землетрясения (май,1995г.), после которого исчез с лица Земли г. Нефтегорск (публикации: «Комсомольская правда»,06.06.1995. Москва, Россия; «Сюкан Синчо», 07.07.1995,Токио,Япония; BBC,1995, Лондон,Великобритания; Турция, «Marmara»1995; Иран, «Alik»1995; США …более 20 стран). За прошедшие 17 лет, по этой методике были рассчитаны параметры (место, время и магнитуда) более 40 000 будущих землетрясений и других природных катастроф, с точностью до 95%, в том числе все, произошедшие за это время катастрофы Краткосрочный прогноз землетрясений инструментальными, а тем более, вероятностными методами исследований, которыми оперирует современная сейсмология, действительно не возможен. Поэтому, до сих пор, все усилия ученых в этом направлении сейсмологии, терпят неудачу. Чем отличаются исследования, проводимые в настоящее время от тех, которые применялись в 1996г.? Ни чем, только увеличилось количество и, возможно качество, применяемой аппаратуры. Поэтому рассчитывать на успех, в решении проблемы краткосрочного прогнозирования землетрясений «современными методами инструментальных исследований» не приходится. В этом вопросе Лондонская конференция принесла бы больше пользы, если бы в решении принятом на ней было добавлено; «современными методами инструментальных исследований». Краткосрочный прогноз землетрясений и других природных катастроф возможен и он существует. Прогнозировать будущие природные катастрофы с абсолютной точностью можно,на неограниченное время вперед Метод состоит из двух частей. 1. Проводится теоретический расчет места, времени и силы будущих землетрясений… 2. За месяц до расчитанного времени, сейсмостанции данной страны проводят исследования изменения параметров,указанного региона и уточняют теоретический расчет. Это позволит,за 3-4 дня, до землетрясения, точно указать место, время и силу будущего землетрясения. 3. Полученные точные данные будущего землетрясения, цунами… передаются Правительству, которое и принимет решение о безопасности жизни людей.

«Шкала Рихтера» - так в обиходе называют шкалу, показывающую магнитуду землетрясения.

Шкала Рихтера характеризует энергию, которая в виде сейсмических волн выделяется во время землетрясения. Предложена эта система относительно недавно – в 1935 году.

Шкалу Рихтера иногда путают с другой классификацией, показывающей уровень воздействия землетрясения на внешние объекты – людей, строения, природные образования. На самом деле это две разные шкалы.

Система Рихтера содержит условные единицы от 1 до 9,5, а шкала интенсивности – 7 или 12 баллов. Во время землетрясения сразу можно определить лишь его магнитуду, а интенсивность возможно оценить позже, когда становятся известны последствия колебаний.

Создание шкалы Рихтера

Первая шкала, позволяющая оценить интенсивность землетрясения, была предложена ещё в 1902 году; её создателем был Джузеппе Меркалли – итальянский священник и геолог. Научной эту классификацию можно назвать с большой натяжкой: описание степени толчков производится в ней на основании чисто субъективных ощущений.

Например – землетрясение в II балла описывается как «ощущающееся в спокойной обстановке на верхних этажах зданий»; однако с тех пор изменились строительные технологии, этажей стало гораздо больше, а «спокойная обстановка» - понятие и вовсе индивидуальное для каждого человека.

Если дом рушится, но люди успели выбежать, то баллов даётся меньше, а если погибли под обломками – то больше. Впоследствии сам Рихтер усовершенствовал шкалу Меркалли, и в таком виде она иногда используется до сих пор – в основном в США. Однако Рихтер желал получить по-настоящему объективную и строгую систему оценки землетрясений.

Он предложил использовать стандартный сейсмограф, фиксирующий толчки с помощью колебаний иглы. Сила землетрясения в предложенной системе оценивалась как десятичный логарифм передвижения иглы, при том что сейсмограф расположен не дальше чем за 600 км от эпицентра. Расстояние от эпицентра влияет на точность измерений, поэтому в уравнение вводилась корректирующая функция, вычисляемая по таблице.

Однако у этой системы были свои недостатки: За основу для градуирования своей шкалы Рихтер брал землетрясения Южной Калифорнии, очаги которых располагаются неглубоко. Первая шкала Рихтера заканчивалась на 6,8 единиц, поскольку большее не позволяло тогдашнее оборудование. Метод измерял только поверхностные волны, в то время как при глубинных землетрясениях значительная часть энергии выделяется в виде объёмных волн.

По-видимому, в то время молодому учёному не хватало знаний о землетрясениях различных видов. Долгие годы наблюдений за этим явлением позволили существенно переработать и уточнить шкалу Рихтера. В настоящее время используются несколько её разновидностей, применяющихся для разных случаев.

Бено Гутенберг

Честь создания шкалы Рихтера принадлежит не одному только Рихтеру. Он разработал её в сотрудничестве с Бено Гутенбергом – выходцем из Германии. Гутенберг также серьёзно изучал землетрясения, однако он был евреем, поэтому с приходом к власти нацистов вынужден был бежать в США. Там он и основал сейсмическую лабораторию, в которой вместе с ним начал работать Рихтер.

Сейсмическая шкала

Землетрясе́ния - подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами) или искусственными процессами (взрывы, заполнение водохранилищ, обрушением подземных полостей горных выработок). Небольшие толчки могут вызывать также подъём лавы при вулканических извержениях.

Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. К счастью, большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).

Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.

Введение

Причиной землетрясения является быстрое смещение участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряженных пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли . Само смещение происходит под действием упругих сил в ходе процесса разрядки - уменьшения упругих деформаций в объеме всего участка плиты и смещения к положению равновесия. Землетрясение представляет собой быстрый (в геологических масштабах) переход потенциальной энергии , накопленной в упруго-деформированных (сжимаемых, сдвигаемых или растягиваемых) горных породах земных недр, в энергию колебаний этих пород (сейсмические волны), в энергию изменения структуры пород в очаге землетрясения. Этот переход происходит в момент превышения предела прочности пород в очаге землетрясения.

Предел прочности пород земной коры превышается в результате роста суммы сил, действующих на нее:

  1. Силы вязкого трения мантийных конвекционных потоков о земную кору;
  2. Архимедовой силы , действующей на легкую кору со стороны более тяжелой пластичной мантии ;
  3. Лунно -солнечных приливов;
  4. Изменяющегося атмосферного давления .

Эти же силы приводят и к возрастанию потенциальной энергии упругой деформации пород в результате смещения плит под их действием. Плотность потенциальной энергии упругих деформаций под действием перечисленных сил нарастает практически во всем объеме плиты (по-разному в разных точках). В момент землетрясения потенциальная энергия упругой деформации в очаге землетрясения быстро (почти мгновенно) снижается до минимальной остаточной (чуть ли не до нуля). Тогда как в окрестностях очага за счет сдвига во время землетрясения плиты как целого упругие деформации несколько увеличиваются. Поэтому и случаются часто в окрестностях главного повторные землетрясения - афтершоки. Точно так же малые «предварительные» землетрясения - форшоки - могут спровоцировать большое в окрестностях первоначального малого землетрясения. Большое землетрясение (с большим сдвигом плиты) может вызвать последующие индуцированные землетрясения даже на удаленных краях плиты.

Из перечисленных сил первые две намного больше 3-ей и 4-й, но скорость их изменения намного меньше, чем скорость изменения приливных и атмосферных сил. Поэтому точное время прихода землетрясения (год, день, минута) определяется изменением атмосферного давления и приливными силами. Тогда как гораздо большие, но медленно меняющиеся силы вязкого трения и Архимедовой силы задают время прихода землетрясения (с очагом в данной точке) с точностью до столетий и тысячелетий.

Глубокофокусные землетрясения, очаги которых располагаются на глубинах до 700 км от поверхности, происходят на конвергентных границах литосферных плит и связаны с субдукцией .

Сейсмические волны и их измерение

Типы сейсмических волн

Сейсмические волны делятся на волны сжатия и волны сдвига .

  • Волны сжатия, или продольные сейсмические волны, вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Волны сжатия также называют первичными (P-волны). Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.
  • Волны сдвига, или поперечные сейсмические волны, заставляют частицы пород колебаться перпендикулярно направлению распространения волны. Волны сдвига также называют вторичными (S-волны).

Существует ещё третий тип упругих волн - длинные или поверхностные волны (L-волны). Именно они вызывают самые сильные разрушения.

Измерение силы и воздействий землетрясений

Для оценки и сравнения землетрясений используются шкала магнитуд и шкала интенсивности.

Шкала магнитуд

Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw).

Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера . По этой шкале возрастанию магнитуды на единицу соответствует 32-кратное увеличение освобождённой сейсмической энергии. Землетрясение с магнитудой 2 едва ощутимо, тогда как магнитуда 7 отвечает нижней границе разрушительных землетрясений, охватывающих большие территории. Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.

Шкалы интенсивности

Шкала Медведева-Шпонхойера-Карника (MSK-64)

12-бальная шкала Медведева-Шпонхойера-Карника была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СниП-11-7-81 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ.

Балл Сила землетрясения Краткая характеристика
1 Не ощущается. Отмечается только сейсмическими приборами.
2 Очень слабые толчки Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя в верхних этажах зданий, и очень чуткими домашними животными.
3 Слабое Ощущается только внутри некоторых зданий, как сотрясение от грузовика.
4 Умеренное Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен. Внутри здания сотрясение ощущает большинство людей.
5 Довольно сильное Под открытым небом ощущается многими, внутри домов - всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих. Ощущается людьми и вне зданий, качаются тонкие ветки деревьев. Хлопают двери.
6 Сильное Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются.
7 Очень сильное Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми.
8 Разрушительное Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются.
9 Опустошительное Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся.
10 Уничтожающее Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов.
11 Катастрофа Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти полностью разрушаются. Сильное искривление и выпучивание железнодорожных рельсов.
12 Сильная катастрофа Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Ни одно сооружение не выдерживает.

Происходящее при сильных землетрясениях

Землетрясение начинается с разрыва и перемещения горных пород в каком-нибудь месте в глубине Земли. Это место называется очагом землетрясения или гипоцентром. Глубина его обычно бывает не больше 100 км, но иногда доходит и до 700 км . Иногда очаг землетрясения может быть и у поверхности Земли. В таких случаях, если землетрясение сильное, мосты , дороги , дома и другие сооружения оказываются разорванными и разрушенными.

Участок земли, в пределах которого на поверхности, над очагом, сила подземных толчков достигает наибольшей величины, называется эпицентром.

В одних случаях пласты земли, расположенные по сторонам разлома, надвигаются друг на друга. В других - земля по одну сторону разлома опускается, образуя сбросы. В местах, где они пересекают речные русла, появляются водопады . Своды подземных пещер растрескиваются и обрушиваются. Бывает, что после землетрясения большие участки земли опускаются и заливаются водой . Подземные толчки смещают со склонов верхние, рыхлые слои почвы, образуя обвалы и оползни . Во время землетрясения в Калифорнии в году образовалась глубокая трещина на поверхности. Она протянулась на 450 километров.

Понятно, что резкое перемещение больших масс земли в очаге должно сопровождаться ударом колоссальной силы. За год люди [кто? ] могут ощущать около 10 000 землетрясений. Из них примерно 100 бывают разрушительными.

Измерительные приборы

Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы - сейсмографы . В большинстве случаев сейсмограф имеет груз с пружинным прикреплением, который при землетрясении остаётся неподвижным, тогда как остальная часть прибора (корпус, опора) приходит в движение и смещается относительно груза. Одни сейсмографы чувствительны к горизонтальным движениям, другие - к вертикальным. Волны регистрируются вибрирующим пером на движущейся бумажной ленте. Существуют и электронные сейсмографы (без бумажной ленты).

Другие виды землетрясений

Вулканические землетрясения

Вулканические землетрясения - разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана . Причина таких землетрясений - лава , вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно - недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

Техногенные землетрясения

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность - увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах , а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.

Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями . Такие землетрясения называются обвальными, они имеют локальный характер и имеют небольшую силу.

Землетрясения искусственного характера

Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при ядерном взрыве . Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

Наиболее разрушительные землетрясения

  • 23 января - Ганьсу и Шеньси, Китай - 830 000 человек погибло
  • - Ямайка - Превращен в руины г.Порт-Ройял
  • - Калькутта , Индия - 300 000 человек погибло
  • - Лиссабон - от 60 000 до 100 000 человек погибло, город полностью разрушен
  • - Колабрия, Италия - от 30 000 до 60 000 человек погибло
  • - Нью-Мадрид, Миссури , США - город превращен в руины, наводнение на территории в 500 кв.км
  • - Санрику, Япония - эпицентр был под морем. Гигантская волна смыла в море 27 000 человек и 10 600 строений
  • - Ассам , Индия - На площади в 23 000 кв.км.рельеф изменен до неузнаваемости, вероятно крупнейшее за всю историю человечества землетрясение
  • - Сан-Франциско , США 1 500 человек погибло, уничтожено 10 кв.км. города
  • - Сицилия , Италия 83 000 человек погибло, превращен в руины г.Мессина
  • - Ганьсу , Китай 20 000 человек погибло
  • - Великое землетрясение Канто - Токио и Йокогама , Япония (8,3 по Рихтеру) - 143 000 человек погибло, около миллиона осталось без крова в результате возникших пожаров
  • - Внутренний Тавр, Турция 32 000 человек погибло
  • - Ашхабад , Туркмения , Ашхабадское землетрясение , - 110 000 человек погибло
  • - Эквадор 10 000 человек погибло
  • - Гималаи разворочена в горах территория площадью 20 000 кв.км.
  • - Агадир , Марокко 12 000 - 15 000 человек погибло
  • - Чили , около 10 000 погибло, разрушены города Консепсьен, Вальдивия , Пуэрто-Мон
  • - Скопье , Югославия около 2 000 погибло, большая часть города превращена в руины

Распространённые заблуждения

  • Магнитуда характеризует землетрясение как цельное, глобальное событие и не является показателем интенсивности землетрясения , ощущаемой в конкретной точке на поверхности Земли. Интенсивность землетрясения, измеряемая в баллах, не только сильно зависит от расстояния до очага; в зависимости от глубины центра и типа горных пород сила землетрясений с одинаковой магнитудой может различаться на 2-3 балла.
  • Магнитуда - безразмерная величина, она не измеряется в баллах .
  • Правильное употребление : «землетрясение с магнитудой 6.0 », «землетрясение силой в 5 магнитуд по шкале Рихтера »
  • Неправильное употребление : «землетрясение с магнитудой 6 баллов », «землетрясение силой 6 баллов по шкале Рихтера ».

Шкала Рихтера

Сейсмическая энергия, выделяемая при ядерном взрыве мощностью 1 мегатонна , эквивалентна землетрясению с магнитудой около 6,0. Стоит заметить, что только небольшая часть энергии взрыва преобразуется в сейсмические колебания.

Частота землетрясений разной магнитуды

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Шкала Рихтера" в других словарях:

    ШКАЛА РИХТЕРА, классификация силы землетрясений, созданная и представленная в 1935 г. американским геологом Чарльзом Рихтером (1900 1985). Шкала основана на принципе логарифма: каждое деление увеличивается в 10 раз, и его основанием является… …

    шкала Рихтера - Шкала, градуированная в арабских цифрах от 0 до 10, используемая для измерения силы землетрясения стандартным сейсмографом в 100 км от его эпицентра … Словарь по географии

    шкала Рихтера - Магнитуды землетрясения, базируется на амплитуде наиболее удалённого следа, регистрируемого сейсмографом на расстоянии 100 км от эпицентра землетрясения [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN … Справочник технического переводчика

    ШКАЛА РИХТЕРА - В управлении ущербом: классификация землетрясений по магнитудам, основанная на оценке энергии сейсмических волн, возникающих при землетрясениях. В шкале использован логарифмический масштаб, так что каждое целое значение в масштабе указывает на… … Страхование и управление риском. Терминологический словарь

    Шкала Рихтера - классификация землетрясений по магнитудам - Шкала Рихтера классификация землетрясений по магнитудам, основанная на оценке энергии сейсмических волн, возникающих при землетрясениях. Шкала была предложена в 1935 году американским сейсмологом Чарльзом Рихтером (1900‑1985), теоретически… … Энциклопедия ньюсмейкеров

    РИХТЕРА ШКАЛА, см. ШКАЛА РИХТЕРА … Научно-технический энциклопедический словарь

    Шкала для оценки интенсивности землетрясения на поверхности Земли. Ш.с. бывает двух видов: основанная на оценке энергии сейсмических волн, возникающих при землетрясениях (шкала Рихтера) и оценке интенсивности проявления землетрясения на… … Словарь черезвычайных ситуаций

    ШКАЛА МЕРКАЛЛИ, шкала из 12 делений, используемая для измерения силы землетрясений. Названа в честь итальянского сейсмолога Джузеппе Меркалли (1850 1914). Основывается на ущербе, причиненном в каждой точке, и изменяется от места к месту. Масштабы … Научно-технический энциклопедический словарь

    Магнитуда землетрясения величина, характеризующая энергию, выделившуюся при землетрясении в виде сейсмических волн. Первоначальная шкала магнитуды была предложена Рихтером в 1935, поэтому в обиходе значение магнитуды ошибочно называют шкалой… … Википедия

    У этого термина существуют и другие значения, см. Шкала (значения). Шкала это знаковая система, для которой задано гомоморфное отображение, ставящее в соответствие реальным объектам тот или иной элемент шкалы. Формально шкалой называют кортеж,… … Википедия

Книги

  • Шкала Рихтера , Евгений Стаховский. "Эффект Стаховского" – эмоциональная реакция, чувство удовлетворения, испытываемые от получения новых знаний, практическая польза от которых не очевидна. На этот раз речь идет обо всем… аудиокнига

Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw).

Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера. По этой шкале возрастанию магнитуды на единицу соответствует 32-кратное увеличение освобождённой сейсмической энергии. Землетрясение с магнитудой 2 едва ощутимо, тогда как магнитуда 7 отвечает нижней границе разрушительных землетрясений, охватывающих большие территории. Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.

1. балл (незаметное) -отмечается только специальными приборами

2. балла (очень слабое) - ощущается только очень чуткими домашними животными и некоторыми людьми в верхних этажах зданий

3. балла (слабое) - ощущается только внутри некоторых зданий, как сотрясение от грузовика

4. балла (умеренное) - землетрясение отмечается многими людьми; возможно колебание окон и дверей;

5. баллов (довольно сильное) - качание висячих предметов, скрип полов, дребезжание стекол, осыпание побелки;

6. баллов (сильное) - легкое повреждение зданий: тонкие трещины в штукатурке, трещины в печах и т. п.;

7. баллов (очень сильное) - значительное повреждение зданий; трещины в штукатурке и отламывание отдельных кусков, тонкие трещины в стенах, повреждение дымовых труб; трещины в сырых грунтах;

8. баллов (разрушительное) - разрушения в зданиях: большие трещины в стенах, падение карнизов, дымовых труб. Оползни и трещины шириной до нескольких сантиметров на склонах гор;

9. баллов (опустошительное) - обвалы в некоторых зданиях, обрушение стен, перегородок, кровли. Обвалы, осыпи и оползни в горах. Скорость продвижения трещин может достигать 2 км/с;

10. баллов (уничтожающее) - обвалы во многих зданиях; в остальных - серьёзные повреждения. Трещины в грунте до 1 м шириной, обвалы, оползни. За счет завалов речных долин возникают озёра;

11. баллов (катастрофа) - многочисленные трещины на поверхности Земли, большие обвалы в горах. Общее разрушение зданий;

12. баллов (сильная катастрофа) - изменение рельефа в больших размерах. Огромные обвалы и оползни. Общее разрушение зданий и сооружений.

8. Просадочность лёссовых пород обусловлена особенностями их состава, состояния и строения. Здесь в первую очередь наиболее важными являются следующие пять позиций: 1) лёссовые породы представляют собой структурированные песчано-глинисто-пылеватые дисперсные системы с резким преобладанием пылеватых частиц и обладают малой гидрофильностью, что обусловливает отсутствие или очень малую величину потенциального их набухания при увлажнении; 2) лёссовые породы характеризуются низкими значениями плотности скелета и высокой пористостью (42-55% и даже несколько выше), причем среди пор преобладают поры открытые; 3) эти породы до момента замачивания обладают низкой природной (естественной) влажностью и соответственно твердой или полутвердой консистенцией; 4) в лёссовых породах в различных, нередко больших количествах (до 10% и более) присутствуют карбонаты и водно-растворимые соли, которые в условиях невысокой природной влажности обусловливают структуру переходного (коагуляционно-цементационного) типа с высокой прочностью структурных связей и всего грунта в целом; 5) прочность такой структуры в лёссовых породах резко по величине и быстро во времени падает при водонасыщении (вплоть до практически моментального размокания небольших образцов, помещенных в спокойную воду).


Наличие и величина просадочности лёссовых пород четко отображаются на компрессионной кривой, которая обычно строится в координатах коэффициент пористости (е) - давление (Р). Эта кривая для просадочных разностей грунтов имеет очень характерную форму, обусловленную резким, скачкообразным уменьшением коэффициента просадочности под действующим давлением при замачивании. На этом графике отрезок отображает характер уплотнения природного грунта с низкой величиной естественной влажности под нагрузкой; участок соответствует реализации просадочных свойств - просадке грунта при замачивании при данном давлении, а отрезок - уплотнению просевшего увлажненного или водонасыщенного грунта при возрастании действующего давления.

В настоящее время применяют комплекс методов. Это связанно с многообразием свойств лессовых грунтов. Ни один из методов не может читаться универсальным. Современные способы строительства на лессовых грунтах позволяют успешно противодействовать возникновению просадочных явлений, особенно в грунтах I типа (просадка от собственного веса грунта отсутствует или не превышает 5см), наибольший эффект борьбы с просадочностью достигается при комбинировании 2-3 различных мероприятий.

Выбор мероприятий производится на основе технико-экономического анализа, в число которых входят:

1. тип грунтовых условий;

2. мощность просадочных грунтов и величина просадки;

3. конструктивные особенности зданий и сооружений.

Все методы подразделяются на три группы:

1. водозащитные;

2. конструктивные;

3. устраняющие просадочные свойства грунтов.

Водозащитные мероприятия предусматривают планировку строительных площадок для отвода поверхностных вод, гидроизоляцию поверхности земли, предохранение зданий от утечек воды из водопроводов, устройство водонепроницаемых полов, покрытий, отмосток.

Конструктивные мероприятия рассчитаны на приспособление объектов к возможным неравномерным осадкам, повышение жесткости стен и прочности стыков, армирование зданий поясами, применение свайных, а также уширенных фундаментов, передающих давление на грунт меньше, чем Р нач.

Наибольшее число методов связано с преобразованием лессовых просадочных оснований. Их подразделяют на 2 группы:

1. улучшение грунтов с применением механических методов;

2. физико-химические способы улучшения.

Механические методы преобразуют грунты либо с поверхности, либо в глубине толщ. Поверхностное уплотнение производят трамбовкой, послойной укаткой, вибрацией, замачиванием грунта под своим весом или весом сооружения. В глубине толщ уплотнение грунтов производят с помощью грунтовых свай (песчаных, известняковых), взрывов в скважинах, замачиванием через скважины с последующим взрывом под водой. Находят применение также песчаные и грунтовые подушки, грунтоцементные опоры.

К физико-химическим способам относят:

  1. обжиг грунтов через скважины;
  2. силикатизация;
  3. пропитка цементным и глинистым растворами;
  4. обработка различными солями;
  5. укрепление грунтов органическими веществами.

9. Процессы и формы рельефа, связанные с работой ветра, названы эоловыми в честь древнегреческого бога Эола, повелителя ветров. Эти процессы включают:вынос ветром результатов выветривания;обтачивание, выдалбливание поверхности горных пород твердыми частицами, приносимыми ветром;перенос эолового материала и его аккумуляция.

Процессы эти происходят везде, где есть незакрепленные рыхлые отложения, например, на песчаных берегах рек, но ярче всего работа ветра видна в пустынях - районах, отличающихся сухостью воздуха и отсутствием растительности. Горные породы там быстро разрушаются из-за сильных колебаний температуры (физическое выветривание). Ветер действует совместно с выветриванием, выносит его продукты и очищает поверхность для дальнейшего разрушения. В некоторых местах поверхность пустыни покрыта слоем крупных обломков, оставшихся на месте после выдувания мелких частиц. Этот слой предохраняет породы от дальнейшего разрушения.

10. Речной эрозией называется постепенное разрушение рекой своего русла за счет размывания как берегов (боковая эрозия), так и ложа русла (глубинная эрозия). Речная эрозия - постоянный процесс, интенсивность которого зависит от прочности окружающих горных пород и интенсивности речного потока. Интенсивность речной эрозии достаточно сильно меняется в зависимости от гидрологических сезонов.

В горных реках, где прочность пород берегов и ложа примерно одинакова, преобладающее влияние имеет глубинная эрозия, приводящая к «пропиливанию» горных пород. Глубина эрозии в таких случаях может составлять многие сотни метров. В дальнейшем, подмывая высокие крутые берега за счет боковой эрозии, река создает условия для формирования крупных обвалов. Эти обвалы могут перекрывать русло реки, формируя горное озеро. Опасные последствия такого процесса описаны выше.

Наибольшую экономическую опасность представляет боковая речная эрозия, приводящая к заметным изменениям речных берегов. Особенно заметна боковая речная эрозия, если берега реки сложены рыхлыми, легко размывающимися породами. Экономические ущербы от боковой речной эрозии особенно заметны в населенных пунктах. Иногда интенсивная боковая эрозия приводит к образованию отмелей ниже по течению реки. В этом случае экономический ущерб наносится судоходству.