Связь сторон и диагоналей параллелограмма. Параллелограмм и его свойства

Как в евклидовой геометрии точка и прямая - главные элементы теории плоскостей, так и параллелограмм является одной из ключевых фигур выпуклых четырехугольников. Из него, как нитки из клубка, втекают понятия «прямоугольника», «квадрата», «ромба» и других геометрических величин.

Вконтакте

Определение параллелограмма

Выпуклый четырехугольник, состоящий из отрезков, каждая пара из которых параллельна, известен в геометрии как параллелограмм.

Как выглядит классический параллелограмм изображает четырехугольник ABCD. Стороны называются основаниями (AB, BC, CD и AD), перпендикуляр, проведенный из любой вершины на противоположную этой вершине сторону, - высотой (BE и BF), линии AC и BD - диагоналями.

Внимание! Квадрат, ромб и прямоугольник - это частные случаи параллелограмма.

Стороны и углы: особенности соотношения

Ключевые свойства, по большому счету, предопределены самим обозначением , их доказывает теорема. Эти характеристики следующие:

  1. Стороны, которые являются противоположными, - попарно одинаковые.
  2. Углы, расположенные противоположно друг другу - попарно равны.

Доказательство: рассмотрим ∆ABC и ∆ADC, которые получаются вследствие разделения четырехугольника ABCD прямой AC. ∠BCA=∠CAD и ∠BAC=∠ACD, поскольку AC для них общая (вертикальные углы для BC||AD и AB||CD, соответственно). Из этого следует: ∆ABC = ∆ADC (второй признак равенства треугольников).

Отрезки AB и BC в ∆ABC попарно соответствуют линиям CD и AD в ∆ADC, что означает их тождество: AB = CD, BC = AD. Таким образом, ∠B соответствует ∠D и они равны. Так как ∠A=∠BAC+∠CAD, ∠C=∠BCA+∠ACD, которые так же попарно одинаковые, то ∠A = ∠C. Свойство доказано.

Характеристики диагоналей фигуры

Основной признак этих линий параллелограмма: точка пересечения разделяет их пополам.

Доказательство: пусть т. Е - это точка пересечения диагоналей AC и BD фигуры ABCD. Они образуют два соизмеримых треугольника - ∆ABE и ∆CDE.

AB=CD, так как они противоположные. Согласно прямых и секущей, ∠ABE = ∠CDE и ∠BAE = ∠DCE.

По второму признаку равенства ∆ABE = ∆CDE. Это означает, что элементы ∆ABE и ∆CDE: AE = CE, BE = DE и при этом они соразмерные части AC и BD. Свойство доказано.

Особенности смежных углов

У смежных сторон сумма углов равна 180° , поскольку они лежат по одну сторону параллельных линий и секущей. Для четырехугольника ABCD:

∠A+∠B=∠C+∠D=∠A+∠D=∠B+∠C=180º

Свойства биссектрисы:

  1. , опущенные на одну сторону, являются перпендикулярными;
  2. противолежащие вершины имеют параллельные биссектрисы;
  3. треугольник, полученный проведением биссектрисы, будет равнобедренным.

Определение характерных черт параллелограмма по теореме

Признаки этой фигуры вытекают из ее основной теоремы, которая гласит следующее: четырехугольник считается параллелограммом в том случае, если его диагонали пересекаются, а эта точка разделяет их на равные отрезки.

Доказательство: пусть в т. Е прямые AC и BD четырехугольника ABCD пересекаются. Так как ∠AED = ∠BEC, а AE+CE=AC BE+DE=BD, то ∆AED = ∆BEC (по первому признаку равенства треугольников). То есть ∠EAD = ∠ECB. Они также являются внутренними перекрестными углами секущей AC для прямых AD и BC. Таким образом, по определению параллельности - AD || BC. Аналогичное свойство линий BC и CD выводится также. Теорема доказана.

Вычисление площади фигуры

Площадь этой фигуры находится несколькими методами, одним из самых простых: умножения высоты и основания, к которому она проведена.

Доказательство: проведем перпендикуляры BE и CF из вершин B и C. ∆ABE и ∆DCF - равные, поскольку AB = CD и BE = CF. ABCD - равновеликий с прямоугольником EBCF, так как они состоят и соразмерных фигур: S ABE и S EBCD , а также S DCF и S EBCD . Из этого следует, что площадь этой геометрической фигуры находится так же как и прямоугольника:

S ABCD = S EBCF = BE×BC=BE×AD.

Для определения общей формулы площади параллелограмма обозначим высоту как hb , а сторону - b . Соответственно:

Другие способы нахождения площади

Вычисления площади через стороны параллелограмма и угол , который они образуют, - второй известный метод.

,

Sпр-ма - площадь;

a и b - его стороны

α - угол между отрезками a и b.

Этот способ практически основывается на первом, но в случае, если неизвестна. всегда отрезает прямоугольный треугольник, параметры которого находятся тригонометрическими тождествами, то есть . Преобразуя соотношение, получаем . В уравнении первого способа заменяем высоту этим произведением и получаем доказательство справедливости этой формулы.

Через диагонали параллелограмма и угол, который они создают при пересечении, также можно найти площадь.

Доказательство: AC и BD пересекаясь, образуют четыре треугольника: ABE, BEC, CDE и AED. Их сумма равна площади этого четырехугольника.

Площадь каждого из этих ∆ можно найти за выражением , где a=BE, b=AE, ∠γ =∠AEB. Поскольку , то в расчетах используется единое значение синуса. То есть . Поскольку AE+CE=AC= d 1 и BE+DE=BD= d 2 , формула площади сводится до:

.

Применение в векторной алгебре

Особенности составляющих частей этого четырехугольника нашли применение в векторной алгебре, а именно: сложении двух векторов. Правило параллелограмма утверждает, что если заданные векторы и не коллинеарны, то их сумма будет равна диагонали этой фигуры, основания которой соответствуют этим векторам.

Доказательство: из произвольно выбранного начала - т. о. - строим векторы и . Далее строим параллелограмм ОАСВ, где отрезки OA и OB - стороны. Таким образом, ОС лежит на векторе или сумме .

Формулы для вычисления параметров параллелограмма

Тождества приведены при следующих условиях:

  1. a и b, α - стороны и угол между ними;
  2. d 1 и d 2 , γ - диагонали и в точке их пересечения;
  3. h a и h b - высоты, опущенные на стороны a и b;
Параметр Формула
Нахождение сторон
по диагоналям и косинусу угла между ними

по диагоналям и стороне

через высоту и противоположную вершину
Нахождение длины диагоналей
по сторонам и величине вершины между ними
по сторонам и одной из диагоналей



Вывод

Параллелограмм как одна из ключевых фигур геометрии находит применение в жизни, например, в строительстве при подсчете площади участка или других измерений. Поэтому знания об отличительных признаках и способах вычисления различных его параметров могут пригодится в любой момент жизни.

В этом разделе мы рассматриваем геометрический объект параллелограмм. Все элементы параллелограмма наследуются от четырехугольника, поэтому рассматривать их мы не будем. А вот свойства и признаки заслуживают детального рассмотрения. Мы разберем:

  • чем признак отличается от свойства;
  • рассмотрим основные свойства и признаки, которые изучают в программе 8 класса;
  • сформулируем еще два дополнительных свойства, которые получим при решении опорных задач.

2.1 Определение параллелограмма

Чтобы правильно давать определения понятиям в геометрии, нужно не просто их заучивать, а понимать, как они формируются. В этом деле нам хорошо помогают схемы родовых понятий. Давайте посмотрим, что это такое.

Наш учебный модуль называется «Четырехугольники» и четырехугольник является ключевым понятием в этом курсе. Мы можем дать следующее определение четырехугольнику:

Четырёхугольник -это многоугольник , у которого четыре стороны и четыре вершины.

В этом определении родовым понятием будет многоугольник. Теперь дадим определение многоугольнику:

Многоугольником называется простая замкнутая ломаная вместе с частью плоскости, которую она ограничивает.

Ясно, что родовым понятием здесь выступает понятие ломаная. Если мы пойдем далее, то придем к понятию отрезка, а затем к конечным понятиям точка и прямая. Таким же образом мы можем продолжить нашу схему вниз:

Если мы потребуем, чтобы у четырехугольника две стороны были параллельны, а две нет, то мы получим фигуру, которая называется трапецией.

Трапеция четырехугольник , у которого две стороны параллельны, а две другие - не параллельны.

А в случае, когда все противоположные стороны параллельны, мы имеем дело с параллелограммом.

Параллелограмм четырехугольник , у которого противоположные стороны параллельны.

2.2 Cвойства параллелограмма

Свойство 1. В параллелограмме противоположные стороны равны и противоположные углы равны.

Докажем это свойство.

Дано: ABCD - параллелограмм.

Доказать: $\angle A = \angle C, \angle B = \angle D, AB = CD, AD = BC.$

Доказательство:

При доказательстве свойств любого геометрического объекта всегда вспоминаем его определение. Итак, параллелограмм – четырехугольник, у которого противоположные стороны параллельны. Ключевым моментом здесь выступает параллельность сторон.

Построим секущую ко всем четырем прямым. Такой секущей будет диагональ BD.


Очевидно, что нужно рассмотреть углы, образованные секущей и параллельными прямыми. Так как прямые параллельны, то накрест лежащие углы равны.

Теперь можно увидеть два равных треугольника по второму признаку.

Из равенства треугольников непосредственно следует первое свойство параллелограмма.

Свойство 2. Диагонали параллелограмма точкой пересечения делятся пополам.


Дано: ABCD - параллелограмм.

Доказать: $AO = OC, BO = OD.$

Доказательство:

Логика доказательства здесь такая же, как и в предыдущем свойстве: параллельность сторон и равенство треугольников. Первый шаг доказательства тот же, что у первого свойства.

Вторым шагом мы доказываем равенство треугольников по второму признаку. Обратите внимание, что равенство $BC=AD$ можно принять без доказательства (используя Свойство 1 ).

Из этого равенства следует, что $AO = OC, BO = OD.$


2.3 Опорная задача №4 (Свойство угла между высотами параллелограмма)


Дано: ABCD - параллелограмм, BK и BM - его высоты, $\angle KBM = 60^0$ .

Найти: $\angle ABK$, $\angle A$

Решение: Приступая к решению этой задачи, нужно иметь ввиду следующее:

высота в параллелограмме перпендикулярна обеим противоположным сторонам

Например, если отрезок $BM$ проведен к стороне $DC$ и является его высотой ($BM \perp DC$), то этот же отрезок будет высотой к противположной стороне ($BM \perp BA$). Это следует из параллельности сторон $AB \parallel DC$.


При решении этой задачи, ценным является свойство, которое мы получаем.

Дополнительное свойство. Угол между высотами параллелограмма, проведенными из его вершины, равен углу при соседней вершине.

2.4 Опорная задача №5 (Свойство биссектрисы параллелограмма)


Биссектриса угла А параллелограмма ABCD пересекает сторону BC в точке L , AD=12 см , AB =10 см . Найти длину отрезка LC .

Решение :

  1. $\angle 1 = \angle 2$ (АК - биссектрисса);
  2. $\angle 2 = \angle 3$ (как накрест лежащие углы при $AD \parallel BC$ и секущей АL);
  3. $\angle 1 = \angle 3$, $\bigtriangleup ABL -$ равнобедренный.

По ходу решения задачи мы получили свойство:

Дополнительное свойство. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм , потому что у него и (вспоминаем наш признак 2 ).

И снова, раз ромб - параллелограмм , то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Свойства ромба

Посмотри на картинку:

Как и в случае с прямоугольником, свойства эти - отличительные , то есть по каждому из этих свойств можно заключить, что перед нами не просто параллелограмм , а именно ромб.

Признаки ромба

И снова обрати внимание : должен быть не просто четырехугольник, у которого перпендикулярны диагонали, а именно параллелограмм . Убедись:

Нет, конечно, хотя его диагонали и перпендикулярны, а диагональ - биссектриса углов и. Но … диагонали не делятся, точкой пересечения пополам, поэтому - НЕ параллелограмм , а значит, и НЕ ромб .

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно почему? - ромб - биссектриса угла A, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

СРЕДНИЙ УРОВЕНЬ

Свойства четырехугольников. Параллелограмм

Свойства параллелограмма

Внимание! Слова «свойства параллелограмма » означают, что если у тебя в задаче есть параллелограмм, то всем нижеследующим можно пользоваться.

Теорема о свойствах параллелограмма.

В любом параллелограмме:

Давай-ка поймём, почему это всё верно, иными словами ДОКАЖЕМ теорему.

Итак, почему верно 1)?

Раз - параллелограмм, то:

  • как накрест лежащие
  • как накрест лежащие.

Значит, (по II признаку: и - общая.)

Ну вот, а раз, то и - всё! - доказали.

Но кстати! Мы ещё доказали при этом и 2)!

Почему? Но ведь (смотри на картинку), то есть, а именно потому, что.

Осталось только 3).

Для этого всё-таки придётся провести вторую диагональ.

И теперь видим, что - по II признаку (угла и сторона «между» ними).

Свойства доказали! Перейдём к признакам.

Признаки параллелограмма

Напомним, что признак параллелограмма отвечает на вопрос "как узнать?", что фигура является параллелограммом.

В значках это так:

Почему? Хорошо бы понять, почему - этого хватит. Но смотри:

Ну вот и разобрались, почему признак 1 верен.

Ну, это ещё легче! Снова проведём диагональ.

А значит:

И тоже несложно. Но …по-другому!

Значит, . Ух! Но и - внутренние односторонние при секущей!

Поэтому тот факт, что означает, что.

А если посмотришь с другой стороны, то и - внутренние односторонние при секущей! И поэтому.

Видишь, как здорово?!

И опять просто:

Точно так же, и.

Обрати внимание: если ты нашел хотя бы один признак параллелограмма в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:


Свойства четырехугольников. Прямоугольник.

Свойства прямоугольника:

Пункт 1) совсем очевидный - ведь просто выполнен признак 3 ()

А пункт 2) - очень важный . Итак, докажем, что

А значит, по двум катетам (и - общий).

Ну вот, раз треугольники и равны, то у них и гипотенузы и тоже равны.

Доказали, что!

И представь себе, равенство диагоналей - отличительное свойство именно прямоугольника среди всех параллелограммов. То есть верно такое утверждение^

Давай поймём, почему?

Значит, (имеются в виду углы параллелограмма). Но ещё раз вспомним, что - параллелограмм, и поэтому.

Значит, . Ну и, конечно, из этого следует, что каждый из них по! Ведь в сумме-то они должны давать!

Вот и доказали, что если у параллелограмма вдруг (!) окажутся равные диагонали, то это точно прямоугольник .

Но! Обрати внимание! Речь идёт о параллелограммах ! Не любой четырехугольник с равными диагоналями - прямоугольник, а только параллелограмм!

Свойства четырехугольников. Ромб

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм, потому что у него и (Вспоминаем наш признак 2).

И снова, раз ромб - параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

Почему? Ну, раз ромб - это параллелограмм, то его диагонали делятся пополам.

Почему? Да, потому же!

Иными словами, диагонали и оказались биссектрисами углов ромба.

Как в случае с прямоугольником, свойства эти - отличительные , каждые из них является ещё и признаком ромба.

Признаки ромба.

А это почему? А посмотри,

Значит, и оба этих треугольника - равнобедренные.

Чтобы быть ромбом, четырёхугольник сперва должен «стать» параллелограммом, а потом уже демонстрировать признак 1 или признак 2.

Свойства четырехугольников. Квадрат

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно, почему? Квадрат - ромб - биссектриса угла, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

Почему? Ну, просто применим теорему Пифагора к.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Свойства параллелограмма:

  1. Противоположные стороны равны: , .
  2. Противоположные углы равны: , .
  3. Углы при одной стороне составляют в сумме: , .
  4. Диагонали делятся точкой пересечения пополам: .

Свойства прямоугольника:

  1. Диагонали прямоугольника равны: .
  2. Прямоугольник - параллелограмм (для прямоугольника выполняются все свойства параллелограмма).

Свойства ромба:

  1. Диагонали ромба перпендикулярны: .
  2. Диагонали ромба являются биссектрисами его углов: ; ; ; .
  3. Ромб - параллелограмм (для ромба выполняются все свойства параллелограмма).

Свойства квадрата:

Квадрат - ромб и прямоугольник одновременно, следовательно для квадрата выполняются все свойства прямоугольника и ромба. А так же.

Определение

Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

На рисунке 1 изображен параллелограмм $A B C D, A B\|C D, B C\| A D$.

Свойства параллелограмма

  1. В параллелограмме противоположные стороны равны: $A B=C D, B C=A D$ (рис 1).
  2. В параллелограмме противоположные углы равны $\angle A=\angle C, \angle B=\angle D$ (рис 1).
  3. Диагонали параллелограмма в точке пересечения делятся пополам $A O=O C, B O=O D$ (рис 1).
  4. Диагональ параллелограмма делит его на два равных треугольника.
  5. Сумма углов параллелограмма, прилежащих к одной стороне равна $180^{\circ}$:

    $$\angle A+\angle B=180^{\circ}, \angle B+\angle C=180^{\circ}$$

    $$\angle C+\angle D=180^{\circ}, \angle D+\angle A=180^{\circ}$$

    Диагонали и стороны параллелограмма связаны следующим соотношением:

    $$d_{1}^{2}+d_{2}^{2}=2 a^{2}+2 b^{2}$$

  6. В параллелограмме угол между высотами равен его острому углу: $\angle K B H=\angle A$.
  7. Биссектрисы углов, прилежащих к одной стороне параллелограмма, взаимно перпендикулярны.
  8. Биссектрисы двух противоположных углов параллелограмма параллельны.

Признаки параллелограмма

Четырехугольник $ABCD$ будет параллелограммом, если

  1. $A B=C D$ и $A B \| C D$
  2. $A B=C D$ и $B C=A D$
  3. $A O=O C$ и $B O=O D$
  4. $\angle A=\angle C$ и $\angle B=\angle D$

Площадь параллелограмма можно вычислить по одной из следующих формул:

$S=a \cdot h_{a}, \quad S=b \cdot h_{b}$

$S=a \cdot b \cdot \sin \alpha, \quad S=\frac{1}{2} d_{1} \cdot d_{2} \cdot \sin \phi$

Примеры решения задач

Пример

Задание. Сумма двух углов параллелограмма равна $140^{\circ}$. Найти больший угол параллелограмма.

Решение. В параллелограмме противоположные углы равны. Обозначим больший угол параллелограмма $\alpha$, а меньший угол $\beta$. Сумма углов $\alpha$ и $\beta$ равна $180^{\circ}$, поэтому заданная сумма, равная $140^{\circ}$, это сумма двух противоположных углов, тогда $140^{\circ} : 2=70^{\circ}$. Таким образом меньший угол $\beta=70^{\circ}$. Больший угол $\alpha$ найдем из соотношения:

$\alpha+\beta=180^{\circ} \Rightarrow \alpha=180^{\circ}-\beta \Rightarrow$

$\Rightarrow \alpha=180^{\circ}-70^{\circ} \Rightarrow \alpha=110^{\circ}$

Ответ. $\alpha=110^{\circ}$

Пример

Задание. Стороны параллелограмма равны 18 см и 15 см, а высота, проведенная к меньшей стороне, равна 6 см. Найти другую высоту параллелограмма.

Решение. Сделаем рисунок (рис. 2)

По условию, $a=15$ см, $b=18$ см, $h_{a}=6$ см. Для параллелограмма справедливы следующие формулы для нахождения площади:

$$S=a \cdot h_{a}, \quad S=b \cdot h_{b}$$

Приравняем правые части этих равенств, и выразим, из полученного равенства, $h_{b} $:

$$a \cdot h_{a}=b \cdot h_{b} \Rightarrow h_{b}=\frac{a \cdot h_{a}}{b}$$

Подставляя исходные данные задачи, окончательно получим:

$h_{b}=\frac{15 \cdot 6}{18} \Rightarrow h_{b}=5$ (см)